COVID-19 Could Help Solve Climate Riddles

  • Date: 18/04/20
  • Scientific American

Pollution declines from pandemic shutdowns may aid in answering long-standing questions about how aerosols influence climate

Nitrogen dioxide levels over parts of the Northeast were about 30 percent lower in March 2020 (top) than average for 2015–2019 (bottom) because of the pandemic shutdowns. Nitrogen dioxide reacts with other chemicals in the air to form particulate pollution. Credit: NASA

As the world scrambles to contain the spread of COVID-19, many economic activities have ground to a halt, leading to marked reductions in air pollution. And with the skies clearing, researchers are getting an unprecedented chance to help answer one of climate science’s thorniest open questions: the impact of atmospheric aerosols. What they learn could improve predictions of the earth’s climatic future. “We hope that this situation—as tragic as it is—can have a positive side for our field,” says aerosol researcher Nicolas Bellouin of the University of Reading in England.

Aerosols are tiny particles and droplets that are emitted into the air by myriad sources—from fossil-fuel burning to fertilizer spraying and even natural phenomena such as sea spray. They alter cloud properties and intercept sunlight, with some scattering solar radiation and others absorbing it. All of these factors influence global temperature—sometimes in competing ways. Overall aerosols have a cooling effect on the climate, offsetting some of the warming caused by greenhouse gases—but just how much they have done so to date, or will do so in the future, remains unclear. The Intergovernmental Panel on Climate Change has estimated that a doubling of atmospheric carbon dioxide concentrations could increase temperatures by anywhere between 1.5 and 4.5 degrees Celsius, with the wide range linked, in part, to scientist’s incomplete understanding of the influence of aerosols. “The fact that the aerosol effect on climate, so far, is so uncertain has held us back,” says atmospheric scientist Trude Storelvmo of the University of Oslo.

Part of the problem in parsing out the role of aerosols has been that their sources could not simply be turned off to compare what happens with and without them. But now the response to the pandemic has effectively done so. Scientists are now jumping at the opportunity to spot the differences in everything from specific cloud properties to changes in local temperatures before and after aerosol emissions dropped. “If this goes on, one pretty damn sure prediction that I can make is that we will see a lot of scientific papers on this in a couple of years,” says atmospheric scientist Bjørn Samset of the Center for International Climate Research in Norway.

One question that Samset, Bellouin and others are hoping to answer is what fraction of aerosols in the atmosphere arise from human activities rather than natural sources. Aerosol emissions vary greatly from place to place, and it is normally difficult to assess their origin based on remote satellite measurements or sparse ground instruments. The current drop, however, could offer information about the background levels of natural aerosols. Earth scientist Drew Shindell of Duke University aims to investigate the relative contributions of different human activities. In China—where some sectors, such as transportation, have shut down more extensively than others, including electricity generation—the mix of aerosols in the air appears to be shifting and could help indicate which activities produce which aerosols. “That’s one thing I find really interesting about the shutdown,” Shindell says.

Aerosols also influence cloud formation, which happens when water droplets condense onto particles. Where more aerosols are present, they can create longer-lasting, more reflective clouds—processes that affect the earth’s temperature but that have been notoriously hard to include in computer models. Storelvmo and other researchers now aim to study cloud patterns in the relative absence of aerosols in order to infer their influence. Comparing these data to simulations of the atmosphere before and after shutdowns “would be a very good test for our models to see if they can reproduce what was observed,” she says. Samset also plans to investigate clouds and hopes to look into the challenging question of how aerosols impact where and how much it rains. For him, he says, finding an answer would be “the holy grail.”

Full post

Recent Popular Articles

We use cookies to help give you the best experience on our website. By continuing without changing your cookie settings, we assume you agree to this. Please read our privacy policy to find out more.