Stratospheric Aerosol Injection Much Cheaper Than Decarbonisation

  • Date: 29/11/18
  • Institute of Physics

A program to reduce Earth’s heat capture by injecting aerosols into the atmosphere from high-altitude aircraft is possible, inexpensive, and would be unlikely to remain secret.

stratospheric aerosol injection

Those are the key findings of new research published today in Environmental Research Letters, which looked at the capabilities and costs of various methods of delivering sulphates into the lower stratosphere, known as stratospheric aerosol injection (SAI).

The researchers examined the costs and practicalities of a large scale, hypothetical ‘solar geoengineering’ project beginning 15 years from now. Its aim would be to halve the increase in anthropogenic radiative forcing, by deploying material to altitudes of around 20 kilometres.

They also discussed whether such an idealized program could be kept secret.

Dr. Gernot Wagner, from Harvard University’s John A. Paulson School of Engineering and Applied Sciences, is a co-author of the study. He said: “Solar geoengineering is often described as ‘fast, cheap, and imperfect’.

“While we don’t make any judgement about the desirability of SAI, we do show that a hypothetical deployment program starting 15 years from now, while both highly uncertain and ambitious, would be technically possible strictly from an engineering perspective. It would also be remarkably inexpensive, at an average of around $2 to 2.5 billion per year over the first 15 years.”

The researchers confirm earlier studies that discuss the low direct costs of potential stratospheric aerosol geoengineering intervention, but they arrive at those numbers with the help of direct input from aerospace engineering companies in specifying what the paper dubs the ‘SAI Lofter (SAIL)’.

Full Post

Recent Popular Articles


We use cookies to help give you the best experience on our website. By continuing without changing your cookie settings, we assume you agree to this. Please read our privacy policy to find out more.