Can Science Be Saved From Self-Destruction?

  • Date: 20/08/16
  • Dan Sarewitz, The New Atlantis

Science isn’t self-correcting, it’s self-destructing. To save the enterprise, scientists must come out of the lab and into the real world.

Morgan Ray Schweitzer (

Science, pride of modernity, our one source of objective knowledge, is in deep trouble. Stoked by fifty years of growing public investments, scientists are more productive than ever, pouring out millions of articles in thousands of journals covering an ever-expanding array of fields and phenomena. But much of this supposed knowledge is turning out to be contestable, unreliable, unusable, or flat-out wrong. From metastatic cancer to climate change to growth economics to dietary standards, science that is supposed to yield clarity and solutions is in many instances leading instead to contradiction, controversy, and confusion. Along the way it is also undermining the four-hundred-year-old idea that wise human action can be built on a foundation of independently verifiable truths. Science is trapped in a self-destructive vortex; to escape, it will have to abdicate its protected political status and embrace both its limits and its accountability to the rest of society.

The story of how things got to this state is difficult to unravel, in no small part because the scientific enterprise is so well-defended by walls of hype, myth, and denial. But much of the problem can be traced back to a bald-faced but beautiful lie upon which rests the political and cultural power of science. This lie received its most compelling articulation just as America was about to embark on an extended period of extraordinary scientific, technological, and economic growth. It goes like this:

Scientific progress on a broad front results from the free play of free intellects, working on subjects of their own choice, in the manner dictated by their curiosity for exploration of the unknown.

So deeply embedded in our cultural psyche that it seems like an echo of common sense, this powerful vision of science comes from Vannevar Bush, the M.I.T. engineer who had been the architect of the nation’s World War II research enterprise, which delivered the atomic bomb and helped to advance microwave radar, mass production of antibiotics, and other technologies crucial to the Allied victory. He became justly famous in the process. Featured on the cover of Time magazine, he was dubbed the “General of Physics.” As the war drew to a close, Bush envisioned transitioning American science to a new era of peace, where top academic scientists would continue to receive the robust government funding they had grown accustomed to since Pearl Harbor but would no longer be shackled to the narrow dictates of military need and application, not to mention discipline and secrecy. Instead, as he put it in his July 1945 report Science, The Endless Frontier, by pursuing “research in the purest realms of science” scientists would build the foundation for “new products and new processes” to deliver health, full employment, and military security to the nation.

From this perspective, the lie as Bush told it was perhaps less a conscious effort to deceive than a seductive manipulation, for political aims, of widely held beliefs about the purity of science. Indeed, Bush’s efforts to establish the conditions for generous and long-term investments in science were extraordinarily successful, with U.S. federal funding for “basic research” rising from $265 million in 1953 to $38 billion in 2012, a twentyfold increase when adjusted for inflation. More impressive still was the increase for basic research at universities and colleges, which rose from $82 million to $24 billion, a more than fortyfold increase when adjusted for inflation. By contrast, government spending on more “applied research” at universities was much less generous, rising to just under $10 billion. The power of the lie was palpable: “the free play of free intellects” would provide the knowledge that the nation needed to confront the challenges of the future.

To go along with all that money, the beautiful lie provided a politically brilliant rationale for public spending with little public accountability. Politicians delivered taxpayer funding to scientists, but only scientists could evaluate the research they were doing. Outside efforts to guide the course of science would only interfere with its free and unpredictable advance.

The fruits of curiosity-driven scientific exploration into the unknown have often been magnificent. The recent discovery of gravitational waves — an experimental confirmation of Einstein’s theoretical work from a century earlier — provided a high-publicity culmination of billions of dollars of public spending and decades of research by large teams of scientists. Multi-billion dollar investments in space exploration have yielded similarly startling knowledge about our solar system, such as the recent evidence of flowing water on Mars. And, speaking of startling, anthropologists and geneticists have used genome-sequencing technologies to offer evidence that early humans interbred with two other hominin species, Neanderthals and Denisovans. Such discoveries heighten our sense of wonder about the universe and about ourselves.

And somehow, it would seem, even as scientific curiosity stokes ever-deepening insight about the fundamental workings of our world, science managed simultaneously to deliver a cornucopia of miracles on the practical side of the equation, just as Bush predicted: digital computers, jet aircraft, cell phones, the Internet, lasers, satellites, GPS, digital imagery, nuclear and solar power. When Bush wrote his report, nothing made by humans was orbiting the earth; software didn’t exist; smallpox still did.

So one might be forgiven for believing that this amazing effusion of technological change truly was the product of “the free play of free intellects, working on subjects of their own choice, in the manner dictated by their curiosity for exploration of the unknown.” But one would be mostly wrong.

Science has been important for technological development, of course. Scientists have discovered and probed phenomena that turned out to have enormously broad technological applications. But the miracles of modernity in the above list came not from “the free play of free intellects,” but from the leashing of scientific creativity to the technological needs of the U.S. Department of Defense (DOD).

The story of how DOD mobilized science to help create our world exposes the lie for what it is and provides three difficult lessons that have to be learned if science is to evade the calamity it now faces.

First, scientific knowledge advances most rapidly, and is of most value to society, not when its course is determined by the “free play of free intellects” but when it is steered to solve problems — especially those related to technological innovation.

Second, when science is not steered to solve such problems, it tends to go off half-cocked in ways that can be highly detrimental to science itself.

Third — and this is the hardest and scariest lesson — science will be made more reliable and more valuable for society today not by being protected from societal influences but instead by being brought, carefully and appropriately, into a direct, open, and intimate relationship with those influences.

Full essay


Recent Popular Articles

We use cookies to help give you the best experience on our website. By continuing without changing your cookie settings, we assume you agree to this. Please read our privacy policy to find out more.